Conical Bit Rotation as a Function of Selected Cutting Parameters

By Carl F. Wingquist, Bruce D. Hanson, Wallace W. Roepke, and Theodore A. Myren

Conical Bit Rotation as a Function of Selected Cutting Parameters

By Carl F. Wingquist, Bruce D. Hanson, Wallace W. Roepke, and Theodore A. Myren

UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary

BUREAU OF MINES

Robert C. Horton, Director

Library of Congress Cataloging in Publication Data:

Conical bit rotation as a function of selected cutting parameters.
(Report of investigations / United States Department of the Interior, Bureau of Mines ; 8983)

Bibliography: p. 13.
Supt. of Docs. no.: I 28.23: 8983.

1. Bits (Drilling and boring)-Testing. 2. Coal mining machineryTesting. I. Wingquist, Carl F. II. Series: Report of investigations (United States. Bureau of Mines) ; 8983.

TN23،U43 [TN279] 622s [622'.23] 85-600 120
Abstract 1
Introduction. 2
Acknowledgment 2
Bit force and bit angle nomenclature and definitions 2
Cutting-induced bit rotation 3
Experimental design. 5
Cutting system 6
Measurement system 6
Sample material 8
Experimental procedure 8
Discussion of results. 8
Factorial experiment 8
Central composite experiment 11
Summary 13
References 13
Appendix A. 14
Appendix B 18
ILLUSTRATIONS

1. Bit forces and attack and skew angles shown in reference to coordinate system 3
2. Top view of bit showing negative skew and positive skew 4
3. Generation of rotational moment 4
4. Bit types tested 5
5. Vertical slotter and sample holder. 6
6. Schematic diagram of measurement system 8
7. Bit, holder, and rotary potentiometer 8
8. Test sample after test. 9
TABLES
9. Values of independent variables for factorial experiment 5
10. Values of independent variables for central composite experiment 5
11. ANOVA results for rotation 9
12. ANOVA results for cutting force 10
13. ANOVA results for normal force 10
14. ANOVA results for lateral force. 10
15. Factorial experiment results 10
16. Coding values for X_{I} 's 11
17. ANOVA for rotation - central composite design. 11
18. ANOVA for cutting force - central composite design 12
19. ANOVA for normal force - central composite design 12
20. ANOVA for lateral force - central composite design. 12
21. Coefficients from central composite design analysis 13
22. Predicted values for rotation 13
A-1. Test results for factorial experiment 15
$\mathrm{A}-2$. Test results for central composite design. 17

By Carl F. Wingquist, ${ }^{1}$ Bruce D. Hanson, ${ }^{2}$ Wallace W. Roepke, ${ }^{3}$ and Theodore A. Myren ${ }^{4}$

Abstract

The Bureau of Mines is engaged in research to evaluate the effects of cutter bit wear at coal mine faces. This paper addresses one element of conical bit wear, bit rotation. A discussion on mounting configuration and bit forces and their effects on rotation is presented. The effects on rotation and bit forces of bit attack angle, cutting depth, and skew are determined for two types of conical bits during linear cutting of sandstone-inclusive rock. The results indicate that a 10° negative skew angle and 35° attack angle produce the maximum rotation of 17.5° for each foot of cutting. Data on bit rotation and bit forces are presented in an appendix.

[^0]
INTRODUCTION

This laboratory study of conical bit rotation is part of an extensive ongoing Bureau research program on coal cutting technology in which the coal cutting system is being fully evaluated to determine those factors that affect the health and safety of the miners. The primary considerations are respirable dust generated by cutting and methane ignition due to frictional heating at the tool-mineral interface. It has been shown ($1-4)^{5}$ that bit wear increases the like $\overline{1} \mathrm{i}$ hood of methane ignition in gassy areas. It is also known that worn bits require a greater normal force (5) and thus tend to cut shallower; for a given machine thrust, than new bits. Since it has been demonstrated (6) that deep cutting lowers specific dust, it follows that bit wear leads to higher dust production. Although conical tools are intended to rotate freely so they will wear symmetrically, they commonly do not rotate effectively.

The primary purpose of this study was to investigate the relationship between conical bit rotation and bit attack angle, skew angle, bit type, cutting depth, and intercut spacing. Effective tool use
requires that rotation of the bit occurs, particularly when cutting hard inclusive material such as sandstone and shale. Nonrotation results in rapid asymmetric wear of the tool tip and consequently, high normal force, shallow cutting, high specific dust, and premature tool failure. The information generated by this study should be of particular interest to tool and machine designers and mine operators using continuous mining machines since only by choosing tool mounting configurations and operating practices that enhance rotation can the full potential of the tool and machine be realized.

The initial step in this study was to identify those parameters felt to be relevant to bit rotation and then create a factorial experimental design or test plan based on those parameters. Cutting tests were then performed in which measurements of bit rotation and bit force were taken for each test condition. The resulting data were analyzed to determine the degree to which each parameter influenced rotation and bit forces. Additional tests, based on a central composite design, were carried out to provide a basis for predicting rotation.

ACKNOWLEDGEMENT

The authors wish to acknowledge Kennametal, Inc., of Latrobe, PA, for assistance in planning the testing and for
providing the cutting tools used in the study.

bit force and bit angle nomenclature and definitions

During cutting tests, bit forces were measured in three mutually perpendicular directions defined in reference to a rectangular ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) coordinate system oriented so that the XY plane is parallel to the sample cutting face with the Y axis parallel to the direction of cutting. These forces, which are named lateral force (FX_{X}, cutting force (F_{y}), and

[^1]normal force (F_{Z}), are shown in figure 1 and are reported in pound-force (1bf) in this paper.

The attack and skew angles used to describe the mounting configuration of the bit are shown in figure 1 and defined in reference to the rectangular ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) coordinate system. The attack angle (θ) ranges from 30° to 50° and is defined as the angle between the longitudinal axis of the bit and the projection of the longitudinal axis into the XZ plane. The skew angle (ϕ) ranges from -10° to $+10^{\circ}$

FIGURE 1. - Bit forces and attack and skew angles shown in reference to coordinate system.
and is defined as the angle between the projection of the longitudinal axis of the bit onto the XZ plane and the Z axis. Stated another way, if the longitudinal axis of the bit passes through the origin and point $\mathrm{P}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$, then the attack angle is given by

$$
\theta=\arcsin \frac{Y}{\left(X^{2}+Y^{2}+Z^{2}\right)^{1 / 2}}
$$

The skew angle is given by

$$
\phi=\arctan \frac{X}{Z} .
$$

Skew is regarded as negative or positive depending on whether the bit is inclined away from or toward the uncut material respectively, as shown in figure 2 .

CUTTING--INDUCED BIT ROTATION

Although an analysis of the mechanics of bit rotation is beyond the scope of this paper, it is obvious that if a bit is to rotate, a moment, or torque, about the longitudinal or rotational axis of the bit must be applied. Referring to figure 3, it can be seen that such a moment results when an unbalanced or net lateral force is present. To simplify
illustration of the concept, the lateral force, F_{X}, is assumed to be applied at a single point on the tip of the bit. An unbalanced lateral force is generally a result of "asymmetrical" employment of the cutting tool such as nonzero bit skew or interactive cutting (in which the breakout zones of neighboring cuts overlap). The frictional force resulting

FIGURE 2. - Top view of bit showing (A) negative skew and (B) positive skew.
from the bit sliding against the rock is given by $\mu \mathrm{FX}$, where μ is the coefficient of friction between rock and steel. This force is directed opposite to the direction of cut. The component of this force acting at right angles to the longitudinal axis of the bit is given by $\mu \mathrm{F}_{\mathrm{X}}$ cos θ, when θ is the angle of attack. The torque (T) or moment about the axis of rotation is thus given by $T=R \mu F_{X} \cos \theta$.

The quantity R is the moment arm or the perpendicular distance in inches from the axis of rotation to the line of action of the force $\mu \mathrm{F}_{\mathrm{X}} \cos \theta$.

It follows from the above analysis that the direction of rotation is dependent on the direction of the net lateral force. Thus, as shown in figure $3 A$, a positive lateral force (directed to the left) produces a negative (counterclockwise) rotation.

The above equation suggests that cutting with high lateral force and low angles of attack will insure rotation; however, the frictional binding that occurs due to high moments at the rock-bit and bit-holder interfaces resists rotation. For rotation to occur, it is necessary for the moment (T) to overcome frictional binding, and it was the primary objective of this study to identify which modes of

FIGURE 3. - Generation of rotational moment. A, Top view of bit showing application of lateral force; B, side view of bitshowing frictional force and its component perpendicular to axis of rotation; C, end view of bit showing moment about rotational axis.
cutting favor the generation of a rotational moment while maintaining reasonable cutting and normal forces and minimal binding.

It is anticipated that future work will include an analysis of the mechanics of bit rotation to establish the relationships between rotational moment, binding friction, and bit forces for various bit mounting configurations. Fast Fourier transforms of the bit force data will be studied to determine if any correlation exists between the frequency and amplitude of bit force fluctuation and rotation.

EXPERIMENTAL DESIGN

The experimental test plan was divided into two phases. First, a full factorial experiment was run using bit type, attack angle, skew angle, cut depth, and spacing as the independent variables. Each of the five variables was run at two levels (table 1). The two bits used are shown in figure 4. For each test, the amount of rotation per foot of cut and the lateral, cutting, and normal forces were measured. Standard analysis of variance (ANOVA) techniques were used to determine

FIGURE 4. - Bit types tested. Both bits are approximately 5 in long.
the significance of the five independent variables. The second phase of the test plan was to develop a central composite design, dropping any variables not showing any significant effects. The central composite design allows quantitative analysis of the relationships between the variables. A central composite design is composed of a factorial portion and an axial portion. Bit type did not affect any of the four dependent variables and was not included in the central composite design. The arrangement of the remaining four independent variables is shown in table 2. A more detafled explanation of both the factorial and the central composite experiments is found in appendix A.

TABLE 1. - Values of independent variables for factorial experiment

Bit type	At tack angle, deg	Skew angle, deg	Cut depth, in	Spacing, in
A	35	-10	0.25	0.50
B	45	+10	.50	1.00

TABLE 2. - Values of independent variables for central composite experiment

Attack angle, deg	Skew angle, deg	Cut depth, in	Spacing, in
FACTORIAL PORTION ${ }^{1}$			
35	-5	0.25	0.50
45	+5	.50	1.00
AXIAL PORTION			
40	0	0.375	0.75
30	0	.375	.75
50	0	.375	.75
40	-10	.375	.75
40	+10	.375	.75
40	0	.125	.75
40	0	.625	.75
40	0	.375	.25
40	0	.375	1.25

${ }^{\prime}$ All 16 possible combinations were run.

The modified Rockford model SA vertical slotter that was used to perfcrm the cutting tests is shown in figure 5, Cutting speed is variable between 5 and 20 in/s with a maximum force capability of 11.000 lbf. The lateral motion of the worktable is synchronized with the vertical movement of the cutter ram so that crossfeed of a preset distance occurs between cuts. The crossfeed increment (dis.tance between cuts) can be adjusted from $1 / 8$ in to 2 in. The sample holder: into which the three-axis force dynamometer is
incorporated, was designed specifically to hold the $1-f t$ cube rock samples used for these tests. The worktable is infed toward the cutter to obtain the desired depth of cut. The cutter ram, after engagement, cycles up and down vertically, producing a linear cut in the sample with each downstroke, with the bit retracting on the upstroke. A complete set of tool hclders was designed and fabricated in. house to provide the several attack and skew angles required for the tests

iviensurerient sistem

A schematic representation of the measurement system is shown in figure 6.

Bit rotation was measured with a multiturn, low-torque rotary potentiometer, mechanically connected by a flexible coupling, to a $1 / 4 \cdots$ in shaft extending from the rear of the bit as shown in figure 7. Potentiometer excitation was supplied by a dual-voltage ($\pm 18 \mathrm{~V}$ dc) power
supply to provide zero output when the porentiometer was at the center of its mechanical range of rotation. Signal polarity then indicated whether net rotation was clockwise or counterclockwise. Because of the relatively high impedance of the rotary potentiometer (10,000 ohms), a noninverting voltage follower operational-amplifier circuit was used as

FIGURE 5. - Vertical slotter and sample holder,

FIGURE 6. - Schematic diagram of measurement system.

FIGURE 7. - Bit, holder, and rotary potentiometer.
a buffer between the potentiometer and the multichannel magnetic tape recorder used to record rotation and bit force signals. A digital voltmeter was used to monitor the rotation signal while the test was in progress.

Bit forces were measured in three mutually perpendicular directions. The sample holder was coupled to the worktable of the cutter machine through four threeaxis piezoelectric load cells. The four outputs for each axis were connected in
parallel to the input of a charge amplifier. A multichanne1 FM magnetic tape recorder was used to record the analog signals from the rotation and force measurement systems. Periodically, as the testing progressed, the tape was played into a four-channel strip chart recorder to produce a hard copy of the data for visual inspection and analysis. Additional processing and analysis were accomplished by the cutting laboratory computer system.

SAMPLE MATERIAL

The rock samples used for these cutting tests were cut from the Berea Sandstone Formation near Cleveland, OH. This rock is abrasive (78 pct quartz) with a compressive strength of $4,200 \mathrm{psi}$ and is

EXPERIMENTAL PROCEDURE

A tool holder and new bit are installed using the attack angle, skew angle, and bit type required for the particular test. The rock sample is placed in the sample holder and oriented so that the bedding planes of the rock are parallel to the direction of cutting but perpendicular to the Z axis (normal force direction). After the sample is securely clamped in place, a series of shallow interactive conditioning cuts are made on the smooth saw-cut surface. This trues up the cutting surface of the sample so it is paralle1 with the direction of crossfeed and also provides a rougher (more natural) test surface. The table is infed to produce the desired cut depth and moved laterally so that the first cut will occur at the extreme edge of the sample. The cross-feed increment control is then adjusted for the desired spacing between cuts, and the bit is rotated in its holder until a zero output is obtained from the multiturn rotary potentiometer. A voice announcement of the test
typical of inclusive rock encountered in coal cutting; such rock is the primary agent of bit wear rather than the coal, which causes minimal wear.
number and test conditions is placed on one channel of the tape recorder at playback speed (3-3/4 in/s). After the recorder is brought up to data recording speed ($15 \mathrm{in} / \mathrm{s}$), the cutter ram is engaged and a series of equally spaced vertical cuts are made as the sample is automatically cross-fed in step with the cutter ram. After each test is completed, samples of the data on the tape are viewed on a storage oscilloscope to verify that no malfunctions occurred. A test is defined as the series of cuts resulting from one pass across the face of the sample. Although the wear resulting from one test is slight, a new bit is used for each test. The number of cuts in the test depends on the spacing required between cuts. The cutting speed on all tests was limited to $12 \mathrm{in} / \mathrm{s}$ since faster speeds would not allow sufficient time for sample crossfeed. Figure 8 shows a test sample following a test. The test results are given in tables $A-1$ and A-2 (appendix A).

DISCUSSION OF RESULTS

FACTORIAL EXPERIMENT

Bit type was the only independent variable that did not show any significant effect on any of the dependent variables.

The other four affected at least two of four dependent variables measured. Tables 3-6 show the ANOVA results for rotation, cutting force, normal force, and lateral force. The two factors affecting

FIGURE 8. - Test sample after test.
rotation were attack angle and skew angle. As can be seen in table 7, using a 35° attack angle and a -10° skew angle produced an average rotation of 8.4°, compared with an average of 2.1° for a 45° attack angle and a $+10^{\circ}$ skew angle. Examination of the data in tables $\mathrm{A}-1$ and $A-2$ confirms that the direction of rotation is determined by the direction of the lateral force. Both cutting force and normal force were affected by attack angle, skew angle, cut depth, and spacing. As expected, both forces increased
with increasing cut depth and increasing spacing. Table 7 shows how these forces were affected by attack angle and skew angle. The force values at the 35° attack angle and -10° skew angle combina-tion (maximum rotation) are slightly lower than those at the 45° attack angle and $+10^{\circ}$ skew angle combination (minimum rotation). Lateral force was affected by attack angle, skew angle, cut depth, and spacing. Lateral force increased with increasing cut depth and decreased with increasing spacing.

TABLE 3. - ANOVA results for rotation

	Sum of squares	Degrees of freedom	Mean square	F-value
Bit type......	18.907	1	18.907	0.02
Attack angle...	144.554	1	144.554	18.14
Skew angle.....	352.669	1	352.669	119.85
Cut depth......	.637	1	.637	.04
Spacing........	1.817	1	1.817	.10
Error.........	$1,225.722$	69	17.764	NAp

${ }^{{ }^{N} \text { SAp Not applicable. }}$.

TABLE 4. - ANOVA results for cutting force

	Sum of squares	Degrees of freedom	Mean square	F-value
Bit type...................	52.0	1	52.0	0.005
Attack angle...............	1,185,036.0	1	1,185,036.0	${ }^{1} 107.6$
Skew angle................	882,428.0	1	882,428.0	180.1
Cut depth...................	2,166,604.0	1	2,166,604.0	${ }^{1} 196.6$
Spacing....................	173,400.0	1	173,400.0	${ }^{1} 15.7$
Error......................	760,228.0	69	11,017.8	NAp

NAp Not applicable.
'Significant at the $99-$ pet level of confidence.
TABLE 5. - ANOVA results for normal force

	Sum of squares	Degrees of freedom	Mean square	F-value
Bit type..........	$1,952.0$	1	$1,952.0$	0.1
Attack angle.....	$2,072,992.0$	1	$2,072,992.0$	155.8
Skew angle......	$1,395,632.0$	1	$1,395,632.0$	104.9
Cut depth........	$2,247,568.0$	1	$2,247,568.0$	168.9
Spacing..........	$134,024.0$	1	$134,024.0$	10.1
Error...........	$918,120.0$	69	$13,306.1$	NAp

NAp Not applicable.
${ }^{1}$ Significant at the $95-$ pct level of confidence.
TABLE 6. - ANOVA results for lateral force

	Sum of squares	Degrees of freedom	Mean square	F-value
Bit type..	14,876.0	1	14,876.0	2.0
Attack angle......	28,394.0	1	28,394.0	${ }^{1} 3.8$
Skew angle........	829,746.0	1	829,746.0	${ }^{2} 112.1$
Cut depth.........	1,406,261.0	1	1,406,261.0	${ }^{2} 190.1$
Spacing...........	206,370.0	1	206,370.0	227.9
Error......	510,439.0	69	7,397.7	NAp

NAp Not applicable.
${ }^{\prime}$ Significant at the 95 -pct level of confidence.
${ }^{2}$ Significant at the 99-pct level of confidence.
TABLE 7. - Factorial experiment results

Skew angle...................	Attack angle			
	35°		45°	
	-10°	$+10^{\circ}$	-10°	$+10^{\circ}$
Rotation'.............deg..	8.4	5.9	7.2	2.1
Force, lbf:				
Cutting....................	588	368	782	618
Normal......................	672	392	927	725
Lateral...	363	152	372	211

${ }^{1}$ Per $12-\mathrm{in}$ cut (absolute value).
NOTE.--The values presented are averaged over all levels of spacing and cut depth.

CENTRAL COMPOSITE EXPERIMENT

The central composite design allows a determination of the functional relationship between the variables of interest. The form of that relationship is

$$
\begin{aligned}
Y=A_{o} & +\sum_{i=1}^{4}\left(A_{i} X_{i}+A_{i j} X_{i}{ }^{2}\right) \\
& +\sum_{i=1}^{3} \sum_{j=i+1}^{4} A_{i j} X_{i} X_{j}
\end{aligned}
$$

where $\quad Y=$ dependent variable (i.e., rotation),
$X_{i}=$ independent variables (i.e., attack angle),
and $\quad A_{i}, A_{i}$, and $A_{i j}=$ coefficients.
Computational procedures required the coding of the independent variables. The X_{1} 's in the above equation are the coded values. Table 8 gives the relationship betwen the X_{i} 's and the four independent variables. A sample calculation using the model is given in appendix B.

Results for the central composite design are given in tables 9-12. With the exception of lateral force, the model presented above gave a reasonable fit to

TABLE 8. - Coding values for X_{i} 's

X $_{\text {I }}$	Attack ang1e, deg	Skew ang1e, deg	Cut depth, in	Spacing, in
-2	30	-10	0.125	0.25
-1	35	-5	.25	.50
0	40	0	.375	.75
1	45	5	.50	1.00
2	50	10	.625	1.25

the data. The coefficients for rotation, cutting force, and normal force are given in table 13.

As previously stated, the central com.posite model can be used to analyze the relationships between the independent variables. Table 14 shows an example of this type of analysis. In the example, attack angle and cut depth are held constant at 35° and 0.5 in, respectively. As shown in the table, with the skew angle at -10°, increasing the spacing causes an increase in rotation. However, with the skew angle at $+10^{\circ}$ increasing spacing results in a decrease in rotation. This brief analysis illustrates the complex nature of the interactions between the variables.

It should be noted that the model is not valid outside the limits of the factorial portion of the experiment (table $2)$.

TABLE 9. - ANOVA for rotation - central composite design

	Sum of squares	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \\ & \hline \end{aligned}$	Mean square	F-value
lst-order term	125.30	4	31.33	${ }^{1} 20.06$
2d-order terms	129.20	10	12.92	28.27
Lack of fit	76.21	10	7.62	34.88
Blocks	50.71	2	25.36	${ }^{1} 16.24$
Error...................	4.68	3	1.56	NAp

NAp Not applicable.
${ }^{1}$ Significant at the $95-$ pct level of confidence.
${ }^{2}$ Significant at the $90-$ pct level of confidence.
${ }^{3}$ Not significant at the $90-$ pct level of confidence.

TABLE 10. - ANOVA for cutting force - central composite design

	Sum of squares	$\begin{aligned} & \text { Degrees of } \\ & \text { freedom } \end{aligned}$	Mean square	F -value
1st-order terms.....................	591,857.0	4	147,964.3	147.14
2d-order terms........................	161,835.2	10	16,183.5	25.16
Lack of fit..	67,432.8	10	6,743.3	${ }^{3} 2.15$
Blocks..................................	545.0	2	272.5	3.09
Error.................................	9,417.0	3	3,139.0	NAp

NAp Not applicable.
${ }^{1}$ Significant at the $95-$ pct level of confidence.
${ }^{2}$ Significant at the 90 pct level of confidence.
${ }^{3}$ Not significant at the 75 -pct level of confidence.
TABLE 11. - ANOVA for normal force - central composite design

	Sum of squares	Degrees of freedom	Mean square	F-value
lst-order terms....	$611,186.4$	4	$152,796.6$	140.76
2d-order terms.....	$247,837.6$	10	$24,783.8$	26.61
Lack of fit........	$114,929.8$	10	$11,493.0$	33.07
Blocks............	216.8	2	108.4	4.03
Error.............	$11,245.5$	3	$3,748.5$	NAp

NAp Not applicable.
${ }^{1}$ Significant at the $95-$ pct level of confidence.
${ }^{2}$ Significant at the $90 \sim$ pct level of confidence.
${ }^{3}$ Not significant at the $90-\mathrm{pct}$ level of confidence.
${ }^{4}$ Not significant at the 75 -pct level of confidence.
TABLE 12. - ANOVA for lateral force - central composite design

	Sum of squares	Degrees of freedom	Mean square	F-value
lst-order terms.....	$695,153.4$	4	$173,788.4$	12.04
2 d-order terms.....	$369,304.9$	10	$36,930.5$	1.43
Lack of fit........	$130,523.7$	10	$13,052.4$	1.15
Blocks...........	$14,625.8$	2	$7,312.9$	1.9
Error.............	$255,565.5$	3	$85,188.5$	NAp

NAp Not applicable.
${ }^{1}$ Not significant at the $75-\mathrm{pct}$ level of confidence.

TABLE 13. - Coefficients from central composite design analysis

Coeff	Rotation	Cutting force	Normal force	Coeff	Rotation	Cutting force	Normal force
A_{0}	1.9167	429.3333	397.1667	$\mathrm{~A}_{44}$	0.2229	-6.2292	-10.3438
$\mathrm{~A}_{1}$	-1.3833	90.4167	118.1250	$\mathrm{~A}_{12}$	1.3750	36.6250	39.1875
$\mathrm{~A}_{2}$	-1.7250	-28.4167	-37.8750	$\mathrm{~A}_{13}$	-.0625	-38.5000	-39.6875
$\mathrm{~A}_{3}$.0333	124.5000	100.3750	$\mathrm{~A}_{14}$	-.6500	7.0000	2.9375
$\mathrm{~A}_{4}$.5750	13.3333	-1.7083	$\mathrm{~A}_{23}$.9625	-13.7500	-24.3125
$\mathrm{~A}_{11}$.2604	40.0208	54.2813	$\mathrm{~A}_{24}$	-1.7500	55.0000	64.0625
$\mathrm{~A}_{22}$.6229	1.5208	6.4063	$\mathrm{~A}_{34}$	-1.0125	-29.8750	-41.8125
$\mathrm{~A}_{33}$.1729	-4.4792	-7.3438				

${ }^{1}$ In the subscripts to the coefficients, $1=$ attack angle, $2=$ skew angle, 3
$=$ depth, and 4 = spacing.
TABLE 14. - Predicted values for rotation

Skew angle......	Rotation, deg/ft of cut	
	-10°	$+10^{\circ}$
1.0 in spacing..	8.8	4.1

SUMMARY

The results of this work show that rotation of conical bits is chiefly affected by the attack angle and the skew angle of the bit. A 35° attack angle produced more rotation than a 45° attack angle in both the factorial and the central composite experiments. Similarly, a negative skew angle produced more rotation than a positive skew angle. The central composite experiment also indicated that maximum rotation is obtained
with a 0.25 -in cut depth and 1.00 in spacing when the attack angle and skew angle are set at their most efficient levels. The direction of rotation depends on the sign or direction of the net lateral force. The cutting and normal forces for the maximum rotation conditions are 301 and 294 lb , respectively. Maximum rotation is obtained at reasonable levels of cutting and normal force.

REFERENCES

1. Larson, D. A., V. W. Dellorfano, C. F. Wingquist, and W. W. Roepke. Pre1iminary Evaluation of Bit Impact Ignitions of Methane Using a Drum-Type Cutting Head. BuMines RI 8755, 1983, 23 pp.
2. Roepke, W. W., and B. D. Hanson. Testing Modified Coal-Cutting Bit Designs for Reduced Energy, Dust, and Incendivity. BuMines RI 8801, 1983, 31 pp.
3. Hanson, B. D. Cutting Parameters Affecting the Ignition Potential of Conical Bits. BuMines RI 8820, $1983,14 \mathrm{pp}$.
4. Roepke, W. W., and B. D. Hanson. Bit Ignition Potential With Worn Carbide Tips. BuMines TPR 121, 1983, 7 pp .
5. . Effect of Asymmetric Wear of Point Attack Bits on Coal-Cutting Parameters and Primary Dust Generation. BuMínes RI 8761, 1983, 16 pp.
6. Black, S., R. L. Schmidt, B. V. Johnson, and B. Banerjee. Effect of Continuous Miner Parameters on the Generation of Respirable Dust. Min. Cong. J., v. 64, No. 4, 1978, pp. 19-25.

APPENDIX A

For the factorial segment of the experiment, a full 2^{5} factorial design with block confounding was used. Block confounding was necessary because all 32 combinations could not be run on a single sandstone block. The factorial was divided into four blocks using the bit \times attack angle x skew angle, the bit x spacing x depth, and the attack angle \times skew angle \times spacing \times depth interactions as confounded effects. Both the order of the eight tests on each block and the order of each block were randomized.

The central composite design also had to be run in different blocks. The factorial portion was run on two blocks using the attack angle \times skew angle \times spacing x depth interaction as the confounded effect. The axial portion was run on a third block. Two center points were run on each of the three blocks.

The data for both the full factorial and the central composite designs are shown in tables $\mathrm{A}-1$ and $\mathrm{A}-2$.

TABLE A-1. - Test results for factorial experiment

ATTACK	SKEW	CUT	SPACIMG,	BLOLK	RGTATION,	AVERGIE FORCE, LE			RMS FORCE, LE			FEAT FGPEE LE		
ANGLE. DEG	AMGLE. DEG	$\begin{gathered} \text { DEFTH. } \\ \text { IN } \\ \hline \end{gathered}$	IN	No,	DEG	Lateral	CUTTIHG	NORMAL	LATERAL	CUTT IHG	MORMAL	LATERAL	CUTTINE	HGRTMAL
- BIT TYPE A														
35	-10	0.25	0.50	1	13.9	-349	574	678	399	643	754	-913	1420	1646
					2.3	-172	336	375	228	402	476	-710	10.42	12 Cl
					4.0	-284	487	604	336	551	660	-811	1224	1378
			1.00	3	17,4	-195	492	586	266	611	725	-820	1740	1859
					22.6	-160	390	403	229	478	508	-573	1294	1411
					12.5	-190	375	453	286	463	555	-351	1263	1476
		0.50	0.50	3	3.5	-688	900	1069	732	959	1116	-1405	15411	1924
					2.5	-528	811	748	586	894	813	- 125	2046	1685
					4.3	-446	612	769	489	693	829	-1050	1573	1632
			1.00	1	1.2	-658	984	1151	712	1084	1225	-1406	2ers	237
					3.0	-368	601	548	377	715	641	-929	1875	1525
					4.5	-441	685	348	504	783	906	-1237	1992	1586
	$+10$	0.25	0.50	2	-5.5	96	162	252	151	243	316	483	804	98\%
					-4.8	102	233	236	172	303	299	596	598	873
					-4.1	96	248	280	180	323	353	393	1091	1115
			1.00	4	0.6	-53	380	444	145	535	574	-318	1702	1675
					2.8	-7	274	247	125	374	352	-31	1291	1205
					3.2	-46	209	242	151	311	340	-159	1255	1208
		0.50	0.50	4	-19.5	305	440	537	391	540	597	932	144	1257
					-6.3	279	419	338	363	521	415	1020	155	1144
					-10.5	235	332	414	335	452	546	1044	146	1329
			1.00	2	-8.3	163	394	543	268	583	635	895	1985	1752
					-4.0	251	592	498	355	795	630	1032	2473	2051
					-5.7	190	912	808	499	1123	949	671	3001	2484
45	-10	0.25	0.50	2	0.0	-164	497	700	206	567	787	$-59 ?$	1396	1796
					4.1	-150	447	531	206	535	636	-6.73	1426	1651
					16.5	-374	825	940	409	889	998	-901	1804	1967
			1.00	4	7.8	-183	762	908	290	875	1009	-859	1977	2542
					6.3	-168	442	477	224	517	552	-633	1459	1253
					0.0	-161	416	535	220	495	626	-70e	1451	16.71
		0.50	0.50	4	12.0	-601	1019	1243	639	1085	1297	-1322	2057	2133
					13.4	-189	301	321	215	331	351	- 518	498	7 F 5
					9.0	-449	679	823	451	768	684	-1058	1767	1770
			1.00	2	8.6	-428	872	1188	468	1000	1278	-1052	2570	2657
					14.8	-402	1119	1183	502	1271	1298	-1407	3101	2748
					15.0	-784	1350	1410	844	1478	1521	-1659	3206	2971
	+10	0.25	0.50	1	-1.1	157	383	498	254	486	614	515	1402	1722
					-1.2	34	229	247	176	306	345	755	1117	1267
					0.0	151	317	362	235	402	454	724	1334	1372
			1.00	3	2.4	-1	869	1075	240	1012	1204	-462	2047	2045
					1.0	19	507	581	159	504	685	81	1723	1909
					-2.1	-34	415	534	214	508	621	-376	1452	1554
		0.50	0.50	3	-4.9	556	936	1114	652	1040	1216	1516	2259	2423
					-3.2	420	723	735	570	841	899	1503	2021	2361
					-3.9	305	592	685	424	723	791	1123	1931	1965
			1.00	1	-4.3	253	1232	1531	505	1428	1688	1032	34185	3458
					-1.6	184	726	765	290	842	882	8アE	2225	217
					0.0	118	725	924	336	905	1109	776	2654	2325

TABLE A－1．－Test results for factorial experiment－－Continued

ATTACK	SKEld	CUT	SPACING，	BLOCK	ROTATION，	AYERAGE FORCE，LE			RUS FORCE，LE			FEAK FORCE，LP		
GNGLE， DEG	ANGLE， DEG	$\begin{gathered} \text { UEPTH. } \\ \text { IHj } \end{gathered}$	IN	No．	DEG	LATERAL	CUTTING	NOPMAL	LATEFAL	CUTTINİ	NÖRMAL	LATEFAL	EUTTING	NOFFそく
EIT TYFE B														
35	-10	0.25	0.50	4	9.6	－330	514	633	363	568	687	－880	1236	1478
					16．3	－227	428	442	283	483	516	－792	1109	1215
					17.3	－227	355	447	269	414	516	－711	1056	1238
			1．00	2.	13.8	－191	322	452	236	398	532	－625	1084	135.3
					10.8	－125	375	377	200	449	449	－7こ1	1233	11.54
					19.2	－201	496	568	292	603	682	－917	1662	1815
		0.50	0.50	2	1.3	－437	459	732	473	534	781	－9．94	1305	1479
					5，0	－490	730	754	557	827	842	－1277	1875	1793
					0.0	－822	1105	1292	860	1165	1343	－15．54	2123	2275
			1.00	4	2.2	－568．	890	1025	650	1027	1118	-1333	2375	こここも
					8.3	－288	552	514	357	662	613	-1043	1829	1513
					5.5	－381	629	563	461	775	751	-1154	2175	1730
	$+10$	0.25	0.50	3	－4．7	165	310	360	240	392	437	732	1156	112 y
					－3．9	78	207	212	165	288	305	45.5	954	1098
					－2．3	73	179	221	151	252	282	427	885	854
			1．00	1	7．0	－1：7	257	361	181	385	494	－588	1317	15シ6．
					－2．2	42	218	199	127	290	273	454	98.5	951
					2， 5	－17	219	258	153	315	329	－269	1206	1007
		0.50	0.50	1	-5.6	469	581	659	565	579	728	1360	1514	1623
					－7．6	284	412	351	366	524	443	1015	1581	1215
					－6， 5	330	444	519	425	554	596	1145	1611	1415
			$\bigcirc .00$	3	－4．0	54	558	634	352	726	734	358	2122	1907
					－4，7	143	432	345	251	615	475	775	2423	1511
					－6．4	48	40.3	45.3	252	504	555	250	2086	$17 \% 4$
	-10	0.25	0,50	3	3.3	－407	883	1115	456	940	1175	－991	1782	2008
45					7.3	－276	590	656	324	657	729	－744	1351	1523
					2.9	－216	427	579	267	500	691	－65E	1259	
			1.00	1	1.2	－184	747	964	272	838	1051	－802	1345	2045
					1.9	－229	590	659	289	559	730	－777	1563	15.3 .3
					2.3	－156	676	879	263	762	955	－854	1915	1961
		0.50	0.50	1	6．0	－697	1123	1456	736	1183	1511	－1475	こ128	2331
					3.1	－409	775	834	4.59	851	907	－994	1775	1732
					8.5	－585	96.3	1182	634	1032	1238	-1200	2113	2130
			1．00	3	18．1	－718	1337	1545	772	1437	1545	－1501	2840	2856
					7.6	－493	1026	1029	568	1157	1127	－1304	2979	2302
					8.2	－508	894	1093	565	993	1156	-114.3	2518	2145
	$+10$	0.25	0.50	4	0.0	174	575	776	254	652	850	832	1519	1810
					0.0	115	353	413	195	420	512	75.	1201	1508
					－1．5	150	316	425	247	408	520	797	1139	1422
			1.00	2	0.0	53	484	634	163	581	729	395	1591	1806
					1.0	－25	524	54%	215	645	664	－576．	1373	1713
					3.7	－191	725	887	324	829	982	－981	1933	1399
		0.50	0.50	2	－2．4	203	403	694	30.5	499	765	1023	1384	1777
					-7.6	385	545	572	486	781	677	1195	2211	1675
					－3．1	671	941	983	737	1031	1056	1349	2406	ご192
			1.00	4	－2．2	425	1098	1210	550	1242	1308	1519	30017	2732
					－1．4	215	573	514	328	727	621	1068	24139	1667
					－2．1	180	542	694	338	728	832	855	2563	2282

TABLE A-2. - Test results for central composite design

ATTACK ANGLE, DEG	SKEld f ANGLE, DEG	$\begin{aligned} & \text { CUT } \\ & \text { DEFTH. } \\ & \text { IN. } \end{aligned}$	$\begin{aligned} & \text { SPACING, } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { BLÕCK } \\ & \text { HO. } \end{aligned}$	$\begin{gathered} \text { ROTATION, } \\ \text { DEG } \end{gathered}$	AVERAIE FORCE, LB			RMS FORCE, LB					
						LATERAL	CUTTING	NÜRMAL	LATERAL	EUTTING	NüRMAL	LATEFAL	CUTTINA	HOETHEL
35	-5	0. 25	0.50	1	6.0	-140	262	268	189	315	333	-574	8013	533
			1. 00	2	16.6	-127	301	294	208	371	417	-733	1071	1391
		0.50	0.50		6.2	-373	548	598	418	719	667	-94i3	1564	1379
			1. 00	1	11.6	-269	596	550	336	678	630	-9.34	1526	1422
	+5	0.25	0.50	2	-. 5	56	139	121	105	185	169	354	754	587
			1. ${ }^{\text {un }}$	1	2.1	-5	221	191	102	291	257	-259		Syi
		0.50	0.50		-7.7	336	503	446	389	576	508	593	137	1117
			1. 00	2	-. 8	221	453	367	290	569	457	840	$1: 559$	1352
45	-5	0.25	0.50		2.5	-189	480	514	245	549	626	-727	1352	1544
			1.00	1	4.6	-152	351	351	188	400	415	-489	1090	1029
		0.50	0.50		1.7	-303	726	789	340	791	840	-74こ	1725	163E
			1.00	2	3.1	-261	503	454	308	588	522	-7.26	$15 \cdot 1$	$11 \overline{8}$
	+5	0.25	0.50	1	-. 9	115	312	322	174	364	396	559	984	1123
			1.00	2	, 2	91	634	716	161	725	803	608	1213	1555
		0.50	0.50		-3.0	323	524	496	367	576	559	772	1.34 .3	1251
			1.00	1	-. 5	278	685	616	357	805	712	914	2901	1551
30	0	0.38	0.75	3	. 4	155	323	255	220	417	335	218	1310	1 ¢12
50					1.3	214	862	961	336	960	1077	977	2252	2311
40	-10				3.5	-240	510	508	292	572	564	-705	$1 \geq 26$	1204
	$+10$				1.1	168	367	325	258	479	452	570	1523	1474
	0	0.13			$-.6$	-23	152	144	68	193	189	-1013	509	624
		0.63			. 4	-373	677	579	427	761	629	-962	1945	129 ?
		0.38	0.25		0.0	241	365	356	279	406	398	553	275	554
			1.25		-1.4	142	450	343	239	585	462	798	1973	1457
			0.75	1	1.2	-224	477	442	271	542	496	-540	1375	1115
					-3.8	215	413	377	271	487	453	771	13.3	1148
				2	-2.8	170	365	338	226	425	415	584	1253	1155
					1.3	-227	438	409	276	504	465	-701	1405	1189
				3	-. 9	-236	490	466	273	545	510	-607	1462	1158
					-1.5	165	393	351	222	470	428	515	1325	1223

APPENDIX B

The procedure to follow in using the empirical model on page 11 to predict rotation, normal force, or cutting force for a given attack angle, skew angle, cut depth, and spacing is illustrated by the
following example: Given attack angle $=30^{\circ}$, skew angle $=-5^{\circ}$, depth $=0.5 \mathrm{in}$, and spacing $=0.75 \mathrm{in}$, find rotation. First the condensed form of the equation

$$
Y=A_{0}+\sum_{i=1}^{4}\left(A_{i} X_{i}+A_{i} X_{1}{ }^{2}\right)+\sum_{i=1}^{3} \sum_{j=i+1}^{4} A_{i j} X_{i} X_{j}
$$

should be expanded to the form:

$$
\begin{aligned}
Y= & A_{0}+A_{1} X_{1}+A_{11} X_{1}{ }^{2}+A_{2} X_{2}+A_{22} X_{2}{ }^{2}+A_{3} X_{3}+A_{33} X_{3}{ }^{2}+A_{4} X_{4}+A_{44} X_{4}{ }^{2} \\
& +A_{12} X_{1} X_{2}+A_{13} X_{1} X_{3}+A_{14} X_{1} X_{4}+A_{23} X_{2} X_{3}+A_{24} X_{2} X_{4}+A_{34} X_{3} X_{4}
\end{aligned}
$$

where the subscripted A's are the coefficients from table 13 and X_{1}, X_{2}, X_{3}, and X_{4} are the independent variables attack angle, skew ang1e, depth, and spacing respectively.

Next, using table 8, determine the coded values corresponding to each independent variable X_{1}. Thus for an attack
angle of 30°, a skew angle of -5°, a cutting depth of 0.5 in , and a spacing of 0.75 in, the values of X_{1}, X_{2}, X_{3}, and X_{4} are $-2,-1,1$, and 0 respectively. Substitution of the coded values for the independent variables and the coefficients from the rotation column of table 13 into the expanded form of the equation yields

$$
\begin{aligned}
\mathrm{Y}= & 1.92+(-1.38)(-2)+(0.26)(.2)^{2}+(-1.72)(-1)+(0.62)(-1)^{2}+(0.03)(1) \\
& +(0.17)(1)^{2}+(0.58)(0)+(0.22)(0)^{2}+(1.38)(-2)(-1)+(-0.06)(-2)(1) \\
& +(-0.65)(-2)(0)+(0.96)(-1)(1)+(-1.75)(-1)(0)+(-1.01)(1)(0) \\
& \text { or } Y=10.18 \text { deg/ft. }
\end{aligned}
$$

[^0]: ${ }^{1}$ Physicist.
 ${ }^{2}$ Physical scientist.
 ${ }^{3}$ Supervisory physical scientist.
 $4_{\text {Mining }}$ engineering technician.
 Twin Cities Research Center, Bureau of Mines, Minneapolis, mN.

[^1]: ${ }^{5}$ Underlined numbers in parentheses refer to items in the list of references preceding the appendixes.

